Chapter 3 — The Back-End and the
Request/Response Cycle

Introduction

Whenever you visit a website, click a button, or fill out a form, you are interacting with more
than just colors, fonts, and animations. Behind every interactive experience is a system
working tirelessly to process your requests, retrieve or store information, and provide
feedback. This part of a web application is called the back-end.

The back-end is the powerhouse that makes websites dynamic, personalized, and capable
of handling real-world operations such as logging in, making payments, or retrieving
information. This chapter explains how the back-end functions, its relationship with the
front-end, and the critical process known as the request/response cycle—the fundamental
communication mechanism that makes the web work.

You will learn:

e \What the back-end is and why it is important.

e How the back-end communicates with the front-end.

e The role of servers, databases, and server-side code.

e The step-by-step process of the request/response cycle.

e HTTP methods and status codes.

Practical examples with code to understand how data is sent and received.

Everything is explained with real-life analogies, diagrams described in text, and code
shippets to make the concepts easily digestible.

What is the Back-End?

Definition

The back-end refers to everything that happens behind the scenes when you interact with a
website or an application. It is responsible for storing, retrieving, processing, and securing
data. While users see the interface (the front-end), the back-end is responsible for making
that interface functional.

Why is the Back-End Important?

Without a back-end, websites would simply be static pages that don’t change or respond to
user actions. For example:

e A shopping site wouldn’t be able to remember your cart.
e A social media platform wouldn’t store your posts.

e An email service wouldn’t be able to send or receive messages.

The back-end ensures that users can interact with a system in a meaningful way.

Components of the Back-End

1. Server — A machine that listens for requests and responds to them.
2. Database — A system that stores data securely.

3. Server-Side Code — Instructions that tell the server how to respond to requests.

Real-Life Analogy — A Restaurant
Imagine you walk into a restaurant:

e You are the user.
e The waiter is the server.
e The kitchen is the database.

e The recipe book is the server-side code.

You place an order (request), the waiter takes it to the kitchen, the kitchen prepares it, and
the waiter serves it back to you (response).

This is exactly how the back-end works in web applications.

The Server — The Heart of the Back-End

What is a Server?

A server is a computer program or machine that waits for requests from clients (usually web
browsers), processes them, and sends back appropriate responses.

It's always on and continuously listening for incoming requests, ready to process data or
perform operations based on the instructions given.

How Does a Server Work?
1. It waits for requests.
2. It reads the request’s details (URL, method, headers, data).
3. It performs operations (querying a database, validating input, etc.).

4. It sends back a response.

Diagram Explained in Text
User’s Browser — Server — Database — Server — Browser

e The user’s browser sends a request.
e The server receives it and queries the database if needed.

e The server processes the information and sends a response back to the browser.

The Database — Where Information Lives

A database stores all the information used by the application. This could include user
accounts, product listings, messages, or settings.

Example — User Database

UserID Name Email Orders

1 John john@example.com [101, 102]

2 Alice alice@example.co [103]
m

When you log in, the server checks this database to verify your credentials.

Types of Databases

1. Relational Databases — Structured, using tables (e.g., MySQL, PostgreSQL).

2. NoSQL Databases — Flexible, using key-value pairs or documents (e.g., MongoDB).

For beginners, knowing that databases are where information is stored is enough.

Server-Side Code - Instructions for the Server

The server needs programming logic to handle requests. Common languages include:

e Node.js (JavaScript) — Easy for beginners and widely used.

e Python (Django, Flask) — Known for simplicity and readability.
e PHP - Traditionally used for web development.

¢ Ruby (Rails) — Elegant and beginner-friendly.

e Java — Enterprise-level applications.

The code instructs the server to perform actions like:

e \Validate form inputs.
e Authenticate users.
e Fetch or store data from/to the database.

e Send responses back to the client.

Example Scenario — Handling Login
When a user logs in:

1. The browser sends the username and password to the server.
2. The server looks up the database to find the user.
3. If the credentials match, the server sends back a success message.

4. If they don't, it sends back an error message.

The Request/Response Cycle — How It All Happens

Overview

The request/response cycle is the process by which the front-end and back-end
communicate. Every action you perform on a website triggers this cycle.

Step 1 — The Request
When you click a button or visit a page, your browser sends a request to the server.
A request consists of:

e URL - The address where the request is sent.
e Method — Type of action (GET, POST, etc.).
e Headers — Extra information like authentication tokens.

e Body (Optional) — Data such as form inputs.

Step 2 — Server Processing
The server reads the request and decides what to do based on:

e The URL being accessed.

e The method (GET or POST).

e The data provided.

It may query the database or perform calculations before preparing the response.

Step 3 — The Response

The server sends back:

e Status code — Indicates success or failure.
e Headers — Information about the response.

e Body — The data or message requested.

The browser then displays or processes this response.

Real-Life Scenario — Contact Form Submission
You fill out a form and press “Submit”. The following happens:

1. The browser sends a POST request with your form data.
2. The server processes the data, validates it, and stores it in the database.
3. The server sends back a response like “Thank you for contacting us!”

4. The browser displays this message.

HTTP Methods — Actions You Can Perform
HTTP methods define what kind of action is being requested from the server.
GET - Retrieve Data

Use this method to fetch information without changing anything.

Example Request:

GET /products

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{"id": 1, "name": "Laptop", "price": 1200 },
{"id": 2, "name": "Phone", "price": 800 }

]

POST - Send Data

Use this to send data to the server, typically when creating something new.
Example Request:

POST /register
Content-Type: application/json

{ .

"username": "johndoe",
"password": "pass123"

}

Example Response:

HTTP/1.1 201 Created
Content-Type: application/json

{

"message": "User registered successfully"

}

PUT - Update Data
Use this when you want to modify existing information.
Example Request:

PUT /user/1
Content-Type: application/json

{

"email": "newemail@example.com"”

}

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{

"message": "User updated successfully”

}

DELETE — Remove Data
Use this to delete existing information.
Example Request:

DELETE /user/1

Example Response:

HTTP/1.1 204 No Content

HTTP Status Codes — Understanding the Server’s
Response

The server communicates not just through content but also through status codes. Here are
some common ones:

e 200 OK - Request was successful.

e 201 Created — New data was created.

e 400 Bad Request — The request was invalid or missing information.
e 401 Unauthorized — Authentication is required.

e 404 Not Found — The requested resource doesn't exist.

e 500 Internal Server Error — Something went wrong on the server.

Example — Building a Simple Server Using Node.js

Now, let’s build a very basic server to demonstrate how requests and responses are
handled.

Code Example:

/I Import the built-in HTTP module
const http = require(’'http');

/I Create the server
const server = http.createServer((req,

[

{"id": 1, "name": "Laptop", "price": 1200 },
{"id": 2, "name": "Phone", "price": 800 }

]

##Ht POST — Send Data
Used to submit data to the server, like filling out forms.
Example Request:

“http
POST /login
Content-Type: application/json

{ .

"username": "john",
"password"; "password123"

}

Example Response:

HTTP/1.1 200 OK
{

"message": "Login successful!"

PUT - Update Data

Used to change existing data.
Example Request:

PUT /users/1
Content-Type: application/json

{

"email": "john_new@example.com"

}

Example Response:

HTTP/1.1 200 OK
{

"message": "User updated successfully

}

DELETE — Remove Data

Used to delete resources.
Example Request:

DELETE /products/1

Example Response:

HTTP/1.1 200 OK
{

"message": "Product deleted successfully"

}

HTTP Status Codes — Understanding Server Responses

The server uses status codes to communicate how the request was handled.

Common Status Codes

e 200 OK — Everything went well.

e 201 Created — A new resource was successfully created.
e 400 Bad Request — The request was invalid.

e 401 Unauthorized — Authentication failed.

e 404 Not Found — The resource doesn’t exist.

e 500 Internal Server Error — Something went wrong on the server.

Example — Handling Errors

If you send incomplete data:

POST /login
Content-Type: application/json

{ .

"username": "john"

}

The server might respond:

HTTP/1.1 400 Bad Request
{

"error"; "Password is required"

}

Example — Complete Request/Response Cycle Using
Node.js

Let’'s write a simple server using Node.js to handle a GET request.

Code Example

/I Import the HTTP module
const http = require('http');

/I Create the server
const server = http.createServer((req, res) => {

if (req.method ==="GET' && req.url === "/hello’) {
res.statusCode = 200;
res.setHeader('Content-Type', 'application/json’);
res.end(JSON.stringify({ message: 'Hello, welcome to the server!' }));
} else {
res.statusCode = 404;
res.setHeader('Content-Type', 'application/json’);
res.end(JSON.stringify({ error: 'Not found' }));

}
h;

/I Server listens on port 3000
server.listen(3000, () => {
console.log('Server is running on http://localhost:3000');

W)k

How it Works
1. The server waits for requests.
2. Iftherequestis a GET to /hello, it responds with a welcome message.
3. For other routes, it responds with “Not found”.

Testing It

e Open your browser and visit http://localhost:360006/hello.
e You should see {"message": "Hello, welcome to the server!"}.

e Visiting any other URL will return a 404 error.

Real-World Example — Form Submission

HTML Form (Front-End)

<IDOCTYPE html>
<html|>
<head>
<title>Contact Form</title>
</head>
<body>

<h1>Contact Us</h1>

<form id="contact-form">
<input type="text" id="name" placeholder="Your Name" required>

<input type="email" id="email" placeholder="Your Email" required>

<textarea id="message" placeholder="Your Message" required></textarea>

<button type="submit">Submit</button>

</form>

<script>
const form = document.getElementByld(‘contact-form');
form.addEventListener('submit’, function(e) {
e.preventDefault();

const name = document.getElementByld('name').value;
const email = document.getElementByld(‘email').value;
const message = document.getElementByld('message').value;

fetch('http://localhost:3000/contact’, {
method: 'POST,
headers: { 'Content-Type'": 'application/json' },
body: JSON.stringify({ name, email, message })
D
.then(response => response.json())
then(data => alert(data.message))
.catch(error => console.error('Error:', error));
b;
</script>
</body>
</html|>

Node.js Server (Back-End)
const http = require('http");

const server = http.createServer((req, res) => {
if (req.method ==="POST' && req.url === "/contact’) {

let body =";

req.on('data’, chunk => {
body += chunk.toString();

b;

reg.on(‘end’, () => {
const { name, email, message } = JSON.parse(body);
console.log('New message from ${name} (${email}): ${message}’);
res.statusCode = 200;
res.setHeader('Content-Type', 'application/json’);
res.end(JSON.stringify({ message: 'Thank you for contacting us!' }));

s

} else {
res.statusCode = 404;
res.end('Not Found');

}
h;

server.listen(3000, () => {
console.log('Server is running on http://localhost:3000');

N;

How It Works

e The form sends a POST request when submitted.

e The server listens for this request, reads the data, and responds with a confirmation
message.

e The front-end shows the message using an alert.

Security in the Request/Response Cycle

Why Security is Important

Since data is sent over the internet, it can be intercepted or tampered with. Good back-end
practices ensure:

e Authentication — Verifying the user’s identity.
e Authorization — Checking if the user has permission.
e Data validation — Ensuring inputs are safe and correct.

e Encryption — Using HTTPS to protect data.

Example — Avoiding SQL Injection
When interacting with a database, always validate and sanitize inputs.
Bad way (unsafe):

const query = "SELECT * FROM users WHERE username =" + username +";";

Good way (safe):

const query = "SELECT * FROM users WHERE username = ?";

Use prepared statements to prevent malicious code injection.

Summary

In this chapter, you have learned:

The back-end powers the functionality of a web application.

A server listens for requests, processes them, and sends responses.
A database stores and retrieves information securely.

Server-side code handles logic, validation, and operations.

The request/response cycle is the process that connects the front-end and
back-end.

HTTP methods like GET, POST, PUT, DELETE define the actions you perform.
HTTP status codes explain how requests are handled.

You've seen practical examples, including creating a server with Node.js and
handling form submission.

Security best practices ensure data integrity and user safety.

	Chapter 3 – The Back-End and the Request/Response Cycle
	Introduction
	What is the Back-End?
	Definition
	Why is the Back-End Important?
	Components of the Back-End
	Real-Life Analogy – A Restaurant

	The Server – The Heart of the Back-End
	What is a Server?
	How Does a Server Work?
	Diagram Explained in Text

	The Database – Where Information Lives
	Example – User Database
	Types of Databases

	Server-Side Code – Instructions for the Server
	Example Scenario – Handling Login

	The Request/Response Cycle – How It All Happens
	Overview
	Step 1 – The Request
	Step 2 – Server Processing
	Step 3 – The Response
	Real-Life Scenario – Contact Form Submission

	HTTP Methods – Actions You Can Perform
	GET – Retrieve Data
	POST – Send Data
	PUT – Update Data
	DELETE – Remove Data

	HTTP Status Codes – Understanding the Server’s Response
	Example – Building a Simple Server Using Node.js
	Code Example:
	PUT – Update Data
	DELETE – Remove Data

	HTTP Status Codes – Understanding Server Responses
	Common Status Codes
	Example – Handling Errors

	Example – Complete Request/Response Cycle Using Node.js
	Code Example
	How it Works
	Testing It

	Real-World Example – Form Submission
	HTML Form (Front-End)
	Node.js Server (Back-End)
	How It Works

	Security in the Request/Response Cycle
	Why Security is Important
	Example – Avoiding SQL Injection

	Summary

